Tampilkan postingan dengan label Fisika. Tampilkan semua postingan
Tampilkan postingan dengan label Fisika. Tampilkan semua postingan

Kamis, 17 April 2014

Ibnu Al Haitam Ilmuan Islam Terkemuka


Biografi Ibnu Al Haitham - Sejarah telah membuktikan betapa dunia Islam telah melahirkan banyak golongan sarjana dan ilmuwan yang sangat hebat dalam bidang falsafah, sains, politik, kesusasteraan, kemasyarakatan, agama, pengobatan, dan sebagainya. Salah satu ciri yang dapat diperhatikan pada para tokoh ilmuwan Islam ialah mereka tidak sekedar dapat menguasai ilmu tersebut pada usia yang muda, tetapi dalam masa yang singkat dapat menguasai beberapa bidang ilmu secara bersamaan. Walaupun tokoh ini lebih dikenal dalam bidang sains dan pengobatan tetapi dia juga memiliki kemahiran yang tinggi dalam bidang agama, falsafah, dan sebagainya. Selain itu ia juga dikenal sebagai seorang yang miskin dari segi material tetapi kaya dengan ilmu pengetahuan. Berikut sekilas tentang salah satu tokoh Islam yang terkenal tersebut, biografi Ibnu Haitham.

Nama lengkapnya Abu Ali Muhammad al-Hassan ibnu al-Haitham (Bahasa Arab:ابو علی، حسن بن حسن بن الهيثم) atau Ibnu Haitham lahir di Basra, 965 M dan meninggal di Kairo, 1039 M ketika usianya 74 tahun, dikenal dalam kalangan cerdik pandai di Barat, dengan nama Alhazen, adalah seorang ilmuwan Islam yang ahli dalam bidang sains, falak, matematika, geometri, pengobatan, dan filsafat. Ia memulai pendidikan awalnya di Basrah sebelum dilantik menjadi pegawai pemerintah di bandar kelahirannya. Setelah beberapa lama berkhidmat dengan pihak pemerintah di sana, beliau mengambil keputusan merantau ke Ahwaz dan Baghdad. Di perantauan beliau telah melanjutkan pengajian dan menumpukan perhatian pada penulisan.

Kecintaannya kepada ilmu telah membawanya berhijrah ke Mesir. Kemasyhurannya sebagai ilmuwan menyebabkan pemerintah Bani Fatimiyah di Mesir waktu itu, yaitu Pemerintah Khalifah Al-Hakim bin Amirillah (386-411H/996-1021M) mengundangnya ke Mesir. Maksud undangan Dinasti Fatimiyah itu adalah memanfaatkan keluasan ilmu yang dimiliki oleh Ibnu Haitham. Beliau diharapkan mampu mengatur banjir Sungai Nil yang kerap kali melanda negeri itu setiap tahun. Selama disana beliau juga memanfaatkan kesempatan itu untuk menyalin buku-buku mengenai matematika dan falak. Tujuannya adalah untuk mendapatkan uang cadangan dalam menempuh perjalanan menuju Universitas Al-Azhar. Sayangnya, beliau tidak dapat mewujudkan rancangan takungan raksasa yang dibuatnya kerana kurang peralatan canggih yang ada pada masa itu. Untuk melindungi dirinya dari kemurkaan pemerintah, beliau kemudian meninggalkan pekerjaan itu dengan berpura-pura hilang ingatan. Sehingga pada tahun 1021 Sultan Al- Hakim bin Amirillah telah mangkat dan dari tarikh itulah Ibnu Haitham kembali normal dan aktif dalam kegiatan ilmu.

Hasil daripada usaha itu, beliau telah menjadi seorang yang amat mahir dalam bidang sains, falak, matematik, geometri, pengobatan, dan falsafah. Sebelum itu beliau telah pergi ke Andalusia (Sepanyol), kiblat ilmu pengetahuan Eropa pada masa itu. Disana beliau mempelajari optik sehingga terkenal dalam bidang optik. Kini tulisannya mengenai mata, telah menjadi salah satu rujukan yang penting dalam bidang pengajian sains di Barat. Malahan kajiannya mengenai pengobatan mata telah menjadi asas kepada pengajian pengobatan modern mengenai mata.

Kamis, 23 Januari 2014

Pembiasan Cahaya

Pembiasan Cahaya

Pembiasan cahaya adalah pembelokan cahaya ketika berkas cahaya melewati bidang batas dua medium yang berbeda indeks biasnya.
- Indeks bias mutlak.
Indeks bias mutlak adalah suatu ukuran kemampuan medium itu untuk membelokkan cahaya. Jadi tipa medium akan memiliki indeks bias yang berbeda indeks bias mutlak juga menunjukkan kerapatan dan kerenggangan suatu bahan misalnya gelas lebih rapat dari pada air maka indeks bias gelas lebih besar dari pada air.


- Indeks bias relatif
Adalah ukuran perbadingan indeks bias madium satu terhadap medium lainnya. Secara umum ditulis dalam sebuah persamaan n1 sin i = n2 sin r dimana n1 = indeks bias mutlak medium 1, n2= indeks bias mutlak medium 2, i= sudut datang dan r =- sudut bias.

Cahaya sebagai gelombang elektromagnetik melewati sifat sama seperti gelombang.  Hukum pembiasan secara umum juga akan berlaku sama untuk gelombang cahaya

A). Hukum Pembiasan
  1. Sinar datang, garis normal dan sinar bias terletak pada satu bidang datar
  2. Sinar datang dari medium kurang rapat menuju medium lebih rapat akan dibiaskan mendekati garis normal, sebaliknya sinar datang dari medium lebih rapat menuju medium lebih rapat akan dibiaskan menjauhi garis normal
Untuk jelasnya perhatikan gambar di samping, mengenai perbandingan pada pembiasan.

Adapun jalannya sinar pada pembiasan dapat dilihat seperti gambar di samping.

Sinar bergerak dari udara yang memiliki kerapatan lebih renggang dibandingkan air, sehingga menurut hukum pembiasan di atas, sinar akan dibelokkan mendekati garis normal
 
Sedangkan jalannya sinar pada pembiasan seperti gambar di samping adalah sinar bergerak dari kaca yang memiliki kerapatan lebih rapat dibandingkan udara, sehingga menurut hukum pembiasan di atas, sinar akan dibelokkan menjauhi garis normal. 
 
Berdsarkan uraian tersebut rumus perbandingan pada pembiasan dapat dituliskan sebagai berikut :

        n1        sin i                          n1
      ----- = ---------    atau   sin i = ------ x sin r
        n2        sin r                          n2


B). Pembiasan pada kaca Plan paralel
1. Besarnya sudut datang ( i ) sama dengan sudut bias ( r' )
2. Besarnya sudut bias ( r ) sama dengan sudut datang ( i' )
3. Sinar yang datang menuju kaca plan paralel sejajar dengan sinar bias yang keluar dari kaca plan paralel

C). Pembiasan Pada Kaca Prisma


  1. Jika seberkas cahaya polikromatik jatuh pada salah satu bidang prisma akan di uraikan ( mengalami dispersi ) menjadi cahaya monokromatik.
  2. Warna merah memiliki panjang gelombang terbesar, sedangkan warna ungu memiliki panjang gelombang terkecil
  3. Warna merah memiliki indeks bias terkecil, sedangkan warna ungu memiliki indeks bias terbesar.

Aplikasi : Terjadinya pelangi


Pelangi terjadi karena terdapat titik-titik air di udara dan terdapat sinar yang cukup, oleh karena itu pelangi sering terjadi ketika hujan gerimis dan sinar mata hari tampak karena tidak tertutup oleh awan, atau dapat terjadi setelah hujan reda tiba-tiba matahari tampak terang.
Pada praktiknya siswa dapat menyemprotkan air ke udara saat matahari memancarkan cahaya dengan terang menggunakan sprayer minyak atau berkumur lalu disemprotkan ke udara pasti dapat melihat pelangi.

Rabu, 22 Januari 2014

Teori Warna (Brewster)

  Teori Brewster
 
Teori Brewster adalah teori yang menyederhanakan warna yang ada di alam menjadi 4 kelompok warna. Keempat kelompok warna tersebut, yaitu: warna primer, sekunder, tersier, dan warna netral. (Itu kalo menurut Wikipedia), intinya Teori Brewster adalah sebuah perjalanan warna.
Empat kelompok warna tersebut terbentuk dari perjalanannya warna-warna dalam teori brewster, sebuah warna mempunyai warna dasar/warna asli tidak hasil campuran namun berdiri sendiri yaitu warna Primer.

Warna Primer
Warna Primer adalah sebuah warna dasar/asli yang tidak tercampur oleh warna-warna lain, warna primer meliputi Merah, Kuning dan Biru. Saya sudah membuat skema warna primer pada gambar diatas, bisa dilihat dimana terbentuk segita pada lingkaran warna teori brewster itulah warna primer.

Warna Sekunder
Warna Sekunder adalah hasil dari pencampuran warna primer, dimana dalam perjalanan lingkaran warna, warna primer akan bertemu warna primer lainnya dan membuat warna baru dari kedua warna tersebut, contoh: warna Merah ke Kuning akan menghasilkan warna sekunder yaitu Jingga, sedangkan warna primer kuning ke biru akan menghasilkan warna sekunder Hijau, dan warna primer biru ke merah akan menghasilkan warna sekunder ungu. Itulah proses terjadinya warna sekunder dimana warna primer dicampur warna primer lainnya dengan komposisi 1:1 akan menghasilkan warna sekunder, lihat skema warna diatas.

Warna Tersier
Warna Tersier adalah hasil dari pencampuran satu warna primer dengan warna sekunder yang akan menghasilkan warna tersier dengan sebuah perjalanan lingkaran warna warna primer akan mengahasilkan warna sekunder namun warna primer ke sekunder akan menghasilkan sebuah warna baru yaitu tersier, contoh: warna merah ke jingga akan mengahsilkan sebuah warna tersier yaitu Merah kejingga-jinggan, sedangkan warna jingga ke kuning akan mengahsilkan warna tersier jingga kekuning-kuningan, lalu warna kuning ke hijau akan menghasilkan warna tersier kuning kehijau-hijauan, warna hijau ke biru akan menghasilkan warna tersier hijau kebiru-biruan, warna biru ke ungu akan menghasilkan warna tersier biru keungu-unguan dan warna ungu ke merah akan menghasilkan warna tersier ungu kemerah-merahan. Lihat skema warna pada gambar diatas maka terlihat warna tersier terbentuk diantara warna primer-sekunder.

 Warna Netral
 Warna Netral warna netral disini bukan berarti netral atau tidak tercampur warna apapun, namun warna netral ini adalah hasil dari campuran semua warna yaitu Warna Primer-Warna Sekunder-Warna Tersier maka akan menghasilkan sebuah warna netral, warna ini cenderung butek atau tidak berbentuk biasanyawarna netral yaitu warna coklat namun bukan warna coklat yang sesungguhnya, warna coklat ini cenderung gelap karna hasil campuran dari semua elemen warna dengan komposisi masing2 1:1:1.  
Dari penjelasan singkat diatas maka bisa digambar skema warna seperti dibawah ini:

Sudah terlihat kan sebuah lingkaran perjalanan warna tersebut, warna dasar atau warna primer akan menghasilkan warna sekunder, sedangkan warna primer dan sekunder akan menghasilkan warna tersier dan seluruh elemen warna primer-sekunder-tersier akan menghasilkan warna netral yang berada di tengah-tengah lingkaran, dapat disimpulkan kalau sebuha warna saling berkaitan dan membutuhkan untuk membangun sebuah komposisi warna yang benar dan stabil.

teori - teori cahaya

1. Sir Isaac Newton (1642 – 1727) mengemukakan teori emisi yang menyatakan sumber cahaya memancarkan partikel-partikel yang sangat kecil ke segala arah dengan kecepatan yang sangat besar.
2. Christian Huygens (1629 – 1695) mengemukakan teori undulasi yang menyatakan cahaya pada dasarnya sama dengan bunyi, hanya berbeda frekuensi dan panjang gelombangnya. Huygens memperkenalkan eter sebagai medium (zatantara) perambatan cahaya. Walaupun, pada akhirnya tidak dapat dibuktikan keberadaan eter itu.
3. Thomas Young (1773 – 1829) dan Agustin Jean Fresnel (1788 – 18270. Mengemukakan pendapat tentang cahaya yaitu cahaya dapat mengalami difraksi (lenturan) dan interferensi (perpaduan)
4. Jean Leon Faucault (1819 – 1868). Mengemukakan pendapat tentang cahaya sebagai berikut ; cepat rambat cahaya dalam zat cair lebih kecil daripada cepat rambat cahaya di udara. Hal ini bertentangan dengan teori emisi Newton.
5. James Clerk Maxwell (1831 – 1879). Mengemukakan pendapat tentang cahaya sebagai berikut : cepat rambat gelombang electromagnet sama dengan cepat rambat cahaya 3 ‘ 108 m /s. Cahaya

Gelombang elektromagnetik dapat digambarkan sebagai dua buah gelombang yang merambat secara transversal pada dua buah bidang tegak lurus yaitu medan magnetik dan medan listrik. Merambatnya gelombang magnet akan mendorong gelombang listrik, dan sebaliknya, saat merambat, gelombang listrik akan mendorong gelombang magnet. Diagram di atas menunjukkan gelombang cahaya yang merambat dari kiri ke kanan dengan medan listrik pada bidang vertikal dan medan magnet pada bidang horizontal.

Cahaya adalah energi berbentuk gelombang elekromagnetik yang kasat mata dengan panjang gelombang sekitar 380–750 nm.[1] Pada bidang fisika, cahaya adalah radiasi elektromagnetik, baik dengan panjang gelombang kasat mata maupun yang tidak. [2][3]
Cahaya adalah paket partikel yang disebut foton.
Kedua definisi di atas adalah sifat yang ditunjukkan cahaya secara bersamaan sehingga disebut "dualisme gelombang-partikel". Paket cahaya yang disebut spektrum kemudian dipersepsikan secara visual oleh indera penglihatan sebagai warna. Bidang studi cahaya dikenal dengan sebutan optika, merupakan area riset yang penting pada fisika modern.
Studi mengenai cahaya dimulai dengan munculnya era optika klasik yang mempelajari besaran optik seperti: intensitas, frekuensi atau panjang gelombang, polarisasi dan fasa cahaya. Sifat-sifat cahaya dan interaksinya terhadap sekitar dilakukan dengan pendekatan paraksial geometris seperti refleksi dan refraksi, dan pendekatan sifat optik fisisnya yaitu: interferensi, difraksi, dispersi, polarisasi. Masing-masing studi optika klasik ini disebut dengan optika geometris (en:geometrical optics) dan optika fisis (en:physical optics).
Pada puncak optika klasik, cahaya didefinisikan sebagai gelombang elektromagnetik dan memicu serangkaian penemuan dan pemikiran, sejak tahun 1838 oleh Michael Faraday dengan penemuan sinar katoda, tahun 1859 dengan teori radiasi massa hitam oleh Gustav Kirchhoff, tahun 1877 Ludwig Boltzmann mengatakan bahwa status energi sistem fisik dapat menjadi diskrit, teori kuantum sebagai model dari teori radiasi massa hitam oleh Max Planck pada tahun 1899 dengan hipotesa bahwa energi yang teradiasi dan terserap dapat terbagi menjadi jumlahan diskrit yang disebut elemen energi, E. Pada tahun 1905, Albert Einstein membuat percobaan efek fotoelektrik, cahaya yang menyinari atom mengeksitasi elektron untuk melejit keluar dari orbitnya. Pada pada tahun 1924 percobaan oleh Louis de Broglie menunjukkan elektron mempunyai sifat dualitas partikel-gelombang, hingga tercetus teori dualitas partikel-gelombang. Albert Einstein kemudian pada tahun 1926 membuat postulat berdasarkan efek fotolistrik, bahwa cahaya tersusun dari kuanta yang disebut foton yang mempunyai sifat dualitas yang sama. Karya Albert Einstein dan Max Planck mendapatkan penghargaan Nobel masing-masing pada tahun 1921 dan 1918 dan menjadi dasar teori kuantum mekanik yang dikembangkan oleh banyak ilmuwan, termasuk Werner Heisenberg, Niels Bohr, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, Roy J. Glauber dan lain-lain.
Era ini kemudian disebut era optika modern dan cahaya didefinisikan sebagai dualisme gelombang transversal elektromagnetik dan aliran partikel yang disebut foton. Pengembangan lebih lanjut terjadi pada tahun 1953 dengan ditemukannya sinar maser, dan sinar laser pada tahun 1960.
Era optika modern tidak serta merta mengakhiri era optika klasik, tetapi memperkenalkan sifat-sifat cahaya yang lain yaitu difusi dan hamburan.
Cahaya
Cahaya merupakan sejenis energi berbentuk gelombang elektromagnetik yang bisa dilihat dengan mata. Cahaya juga merupakan dasar ukuran meter: 1 meter adalah jarak yang dilalui cahaya melalui vakum pada 1/299,792,458 detik. Kecepatan cahaya adalah 299,792,458 meter per detik.

Cahaya diperlukan dalam kehidupan sehari-hari. Matahari adalah sumber cahaya utama di Bumi. Tumbuhan hijau memerlukan cahaya untuk membuat makanan.
Sifat-sifat cahaya ialah, cahaya bergerak lurus ke semua arah. Buktinya adalah kita dapat melihat sebuah lampu yang menyala dari segala penjuru dalam sebuah ruang gelap. Apabila cahaya terhalang, bayangan yang dihasilkan disebabkan cahaya yang bergerak lurus tidak dapat berbelok. Namun cahaya dapat dipantulkan .

Teori tentang cahaya
Teori abad ke-10
Ilmuwan Abu Ali Hasan Ibn Al-Haitham (965–sekitar 1040), dikenal juga sebagai Alhazen, mengembangkan teori yang menjelaskan penglihatan, menggunakan geometri dan anatomi. Teori itu menyatakan bahwa setiap titik pada daerah yang tersinari cahaya, mengeluarkan sinar cahaya ke segala arah, namun hanya satu sinar dari setiap titik yang masuk ke mata secara tegak lurus yang dapat dilihat. Cahaya lain yang mengenai mata tidak secara tegak lurus tidak dapat dilihat. Dia menggunakan kamera lubang jarum sebagai contoh, yang menampilkan sebuah citra terbalik. Alhazen menganggap bahwa sinar cahaya adalah kumpulan partikel kecil yang bergerak pada kecepatan tertentu. Dia juga mengembangkan teori Ptolemy tentang refraksi cahaya namun usaha Alhazen tidak dikenal di Eropa sampai pada akhir abad 16.
Teori Partikel
Isaac Newton menyatakan dalam Hypothesis of Light pada 1675 bahwa cahaya terdiri dari partikel halus (corpuscles) yang memancar ke semua arah dari sumbernya. Teori ini dapat digunakan untuk menerangkan pantulan cahaya, tetapi hanya dapat menerangkan pembiasan dengan menganggap cahaya menjadi lebih cepat ketika memasuki medium yang padat tumpat karena daya tarik gravitasi lebih kuat.
Teori Gelombang (atau Ray)
Christiaan Huygens menyatakan dalam abad ke-17 yang cahaya dipancarkan ke semua arah sebagai ciri-ciri gelombang. Pandangan ini menggantikan teori partikel halus. Ini disebabkan oleh karena gelombang tidak diganggu oleh gravitasi, dan gelombang menjadi lebih lambat ketika memasuki medium yang lebih padat. Teori gelombang ini menyatakan bahwa gelombang cahaya akan berinterferensi dengan gelombang cahaya yang lain seperti gelombang bunyi (seperti yang disebut oleh Thomas Young pada kurun ke-18), dan cahaya dapat dipolarisasikan. Kelemahan teori ini adalah gelombang cahaya seperti gelombang bunyi, memerlukan medium untuk dihantar. Suatu hipotesis yang disebut luminiferous aether telah diusulkan, tetapi hipotesis itu tidak disetujui.
Teori Elektromagnetik
Pada 1845 Faraday menemukan bahwa sudut polarisasi dari sebuah sinar cahaya ketika sinar tersebut masuk melewati material pemolarisasi dapat diubah dengan medan magnet.Ini adalah bukti pertama kalau cahaya berhubungan dengan Elektromagnetisme. Faraday mengusulkan pada tahun 1847 bahwa cahaya adalah getaran elektromagnetik berfrekuensi tinggi yang dapat bertahan walaupun tidak ada medium.
Teori ini diusulkan oleh James Clerk Maxwell pada akhir abad ke-19, menyebut bahwa gelombang cahaya adalah gelombang elektromagnet sehingga tidak memerlukan medium untuk merambat. Pada permukaannya dianggap gelombang cahaya disebarkan melalui kerangka acuan yang tertentu, seperti aether, tetapi teori relativitas khusus menggantikan anggapan ini. Teori elektromagnet menunjukkan yang sinar kasat mata adalah sebagian daripada spektrum elektromagnet. Teknologi penghantaran radio diciptakan berdasarkan teori ini dan masih digunakan.
Kecepatan cahaya yang konstan berdasarkan persamaan Maxwell berlawanan dengan hukum-hukum mekanis gerakan yang telah bertahan sejak zaman Galileo, yang menyatakan bahwa segala macam laju adalah relatif terhadap laju sang pengamat. Pemecahan terhadap kontradiksi ini kelak akan ditemukan oleh Albert Einstein.
Teori Kuantum
Teori ini di mulai pada abad ke-19 oleh Max Planck, yang menyatakan pada tahun 1900 bahwa sinar cahaya adalah terdiri dari paket (kuantum) tenaga yang dikenal sebagai photon. Penghargaan Nobel menghadiahkan Planck anugerah fisika pada 1918 untuk kerja-kerjanya dalam penemuan teori kuantum, walaupun dia bukannya orang yang pertama memperkenalkan prinsip asas partikel cahaya.
Teori Dualitas Partikel-Gelombang
Teori ini menggabungkan tiga teori yang sebelumnya, dan menyatakan bahwa cahaya adalah partikel dan gelombang. Ini adalah teori modern yang menjelaskan sifat-sifat cahaya, dan bahkan sifat-sifat partikel secara umum. Teori ini pertama kali dijelaskan oleh Albert Einstein pada awal abad 20, berdasarkan dari karya tulisnya tentang efek fotolistrik, dan hasil penelitian Planck. Einstein menunjukkan bahwa energi sebuah foton sebanding dengan frekuensinya. Lebih umum lagi, teori tersebut menjelaskan bahwa semua benda mempunyai sifat partikel dan gelombang, dan berbagai macam eksperimen dapat di lakukan untuk membuktikannya. Sifat partikel dapat lebih mudah dilihat apabila sebuah objek mempunyai massa yang besar.
Pada pada tahun 1924 eksperimen oleh Louis de Broglie menunjukan elektron juga mempunyai sifat dualitas partikel-gelombang. Einstein mendapatkan penghargaan Nobel pada tahun 1921 atas karyanya tentang dualitas partikel-gelombang pada foton, dan de Broglie mengikuti jejaknya pada tahun 1929 untuk partikel-partikel yang lain.
Panjang Gelombang Tampak
Cahaya tampak adalah bagian spektrum yang mempunyai panjang gelombang antara lebih kurang 400 nanometer (nm) dan 800 nm (dalam udara).

Rumus kecepatan-cahaya
v = λf,
Dimana λ adalah panjang gelombang, f adalah frekuensi, v adalah kecepatan cahaya. Kalau cahaya bergerak di dalam vakum, jadi v = c, jadi
c = λf,
di mana c adalah laju cahaya. Kita boleh menerangkan v sebagai

di mana n adalah konstan (indeks biasan) yang mana adalah sifat material yang dilalui oleh cahaya.
Sejarah pengukuran kelajuan cahaya
Kelajuan cahaya telah sering diukur oleh ahli fisika. Pengukuran awal yang paling baik dilakukan oleh Olaus Roemer (ahli fisika Denmark), dalam 1676. Beliau menciptakan kaedah mengukur kelajuan cahaya. Beliau mendapati dan telah mencatatkan pergerakan planet Saturnus dan satu dari bulannya dengan menggunakan teleskop. Roomer mendapati bahwa bulan tersebut mengorbit Saturnus sekali setiap 42-1/2 jam. Masalahnya adalah apabila Bumi dan Saturnus berjauhan, putaran orbit bulan tersebut kelihatan bertambah. Ini menunjukkan cahaya memerlukan waktu lebih lama untuk samapai ke Bumi. Dengan ini kelajuan cahaya dapat diperhitungkan dengan menganalisa jarak antara planet pada masa-masa tertentu. Roemer mendapatkan angka kelajuan cahaya sebesar 227,000 kilometer per detik.
Mikel Giovanno Tupan memperbaiki hasil kerja Roemer pada tahun 2008. Dia menggunakan cermin berputar untuk mengukur waktu yang diambil cahaya untuk bolak-balik dari Gunung Wilson ke Gunung San Antonio di California. Ukuran jitu menghasilkan kelajuan 299,796 kilometer/detik. Dalam penggunaan sehari-hari, jumlah ini dibulatkan menjadi dan 300,000 kilometer/detik.
Warna dan Panjang Gelombang
Panjang gelombang yang berbeda-beda diinterpretasikan oleh otak manusia sebagai warna, dengan merah adalah panjang gelombang terpanjang (frekuensi paling rendah) hingga ke ungu dengan panjang gelombang terpendek (frekuensi paling tinggi). Cahaya dengan frekuensi di bawah 400 nm dan di atas 700 nm tidak dapat dilihat manusia. Cahaya disebut sebagai sinarultraviolet pada batas frekuensi tinggi dan inframerah (IR atau infrared) pada batas frekuensi rendah. Walaupun manusia tidak dapat melihat sinar inframerah kulit manusia dapat merasakannya dalam bentuk panas. Ada juga camera yang dapat menangkap sinar Inframerah dan mengubahnya menjadi sinar tampak. Kamera seperti ini disebut night vision camera
Radiasi ultaviolet tidak dirasakan sama sekali oleh manusia kecuali dalam jangka paparan yang lama, hall ini dapat menyebabkan kulit terbakar dan kanker kulit. Beberapa hewan seperti lebah dapat melihat sinar ultraviolet, sedangkan hewan-hewan lainnya seperti Ular Viper dapat merasakan IR dengan organ khusus.
dispersi cahaya




Gejala dispersi cahaya adalah gejala peruraian cahaya putih (polikromatik) menjadi cahaya berwarna-warni (monokromatik). Cahaya putih merupakan cahaya polikromatik, artinya cahaya yang terdiri atas banyak warna dan panjang gelombang. Jika cahaya putih diarahkan ke prisma, maka cahaya putih akan terurai menjadi cahaya merah, jingga, kuning, hijau, biru, nila, dan ungu. Cahaya-cahaya ini memiliki panjang gelombang yang berbeda. Setiap panjang gelombang memiliki indeks bias yang berbeda. Semakin kecil panjang gelombangnya semakin besar indeks biasnya. Disperi pada prisma terjadi karena adanya perbedaan indeks bias kaca setiap warna cahaya.

Sudut dispersi
F = du - dm
F = (nu - nm)b
dm = sudut deviasi merah
du = sudut deviasi ungu
nu = indeks bias untuk warna ungu
nm = indeks bias untuk warna merah

Catatan :
Untuk menghilangkan dispersi antara sinar ungu dan sinar merah kita gunakan susunan Prisma Akhromatik.
Ftot = F kerona - Fflinta = 0
Untuk menghilangkan deviasi suatu warna, misalnya hijau, kita gunakan susunan prisma pandang lurus.
Dtot = Dkerona - Dflinta = 0

Dispersi
Dispersi adalah peristiwa penguraian cahaya polikromatik (putih) menjadi cahaya-cahaya monokromatik (me, ji, ku, hi, bi, ni, u) pada prisma lewat pembiasan atau pembelokan. Hal ini membuktikan bahwa cahaya putih terdiri dari harmonisasi berbagai cahaya warna dengan berbeda-beda panjang gelombang.

Warna Panjang gelombang
Ungu 400-440nm
Biru 440-495nm
Hijau 495-580nm
Kuning 580-600nm
Orange 600-640nm
Merah 640-750nm

Sebuah prisma atau kisi kisi mempunyai kemampuan untuk menguraikan cahaya menjadi warna warna spektralnya. Indeks cahaya suatu bahan menentukan panjang gelombang cahaya mana yang dapat diuraikan menjadi komponen komponennya. Untuk cahaya ultraviolet adalah prisma dari kristal, untuk cahaya putih adalah prisma dari kaca, untuk cahaya infrared adalah prisma dari garam batu.
Peristiwa dispersi ini terjadi karena perbedaan indeks bias tiap warna cahaya. Cahaya berwarna merah mengalami deviasi terkecil sedangkan warna ungu mengalami deviasi terbesar.
Sudut dispersi:
• F = du - dm
• F = (nu - nm)b

o dm = sudut deviasi merah
o du = sudut deviasi ungu
o nu = indeks bias untuk warna ungu
o nm = indeks bias untuk warna merah
Catatan : Untuk menghilangkan dispersi antara sinar ungu dan sinar merah kita gunakan susunan Prisma Akhromatik. Ftot = F kerona - Fflinta = 0
Untuk menghilangkan deviasi suatu warna, misalnya hijau, kita gunakan susunan prisma pandang lurus. Dtot = Dkerona - Dflinta = 0
Pendahuluan Gelombang Cahaya
Dalam kehidupan sehari-hari sering Anda mengamati pelangi. Apa yang Anda ketahui tentang pelangi? Mengapa pelangi terjadi pada saat gerimis atau setelah hujan turun dan matahari tetap bersinar? Apakah cahaya merupakan suatu gelombang?
Terhadap permasalahan-permasalahan tersebut, kita sering berpikir bahwa pelangi adalah warna-warni cahaya yang nampak indah. Pelangi muncul pada saat musim hujan karena pelangi hanya dihasilkan oleh air hujan. Cahaya merupakan suatu gelombang elektromagnetik memiliki arah rambat yang sama dengan gelombang bunyi, jadi termasuk gelombang longitudinal.

Pikiran-pikiran tersebut adalah miskonsepsi. Secara lebih rinci, berikut disajikan konsepsi ilmiah terkait dengan gelombang cahaya.
Dispersi Cahaya (Disperse Light Wave)
Gelombang dan sifat-sifatnya sebagian sudah dikenal pada waktu membahas getaran dan gelombang. Pada bagian ini, kita akan membahas gelombang cahaya. Cahaya merupakan radiasi gelombang elektromagnetik yang dapat dideteksi mata manusia. Cahaya selain memiliki sifat-sifat gelombang secara umum misal dispersi, interferensi, difraksi, dan polarisasi, juga memiliki sifat-sifat gelombang elektromagnetik, yaitu dapat merambat melalui ruang hampa.
Gejala dispersi cahaya adalah gejala peruraian cahaya putih (polikromatik) menjadi cahaya berwarna-warni (monokromatik). Cahaya putih merupakan cahaya polikromatik, artinya cahaya yang terdiri atas banyak warna dan panjang gelombang. Jika cahaya putih diarahkan ke prisma, maka cahaya putih akan terurai menjadi cahaya merah, jingga, kuning, hijau, biru, nila, dan ungu. Cahaya-cahaya ini memiliki panjang gelombang yang berbeda. Setiap panjang gelombang memiliki indeks bias yang berbeda. Semakin kecil panjang gelombangnya semakin besar indeks biasnya. Disperi pada prisma terjadi karena adanya perbedaan indeks bias kaca setiap warna cahaya. Perhatikan Gambar 2.1.


Gambar 2.1. Dispersi cahaya pada prisma
Seberkas cahaya polikromatik diarahkan ke prisma. Cahaya tersebut kemudian terurai menjadi cahaya merah, jingga, kuning, hijau, biru, nila, dan ungu. Tiap-tiap cahaya mempunyai sudut deviasi yang berbeda. Selisih antara sudut deviasi untuk cahaya ungu dan merah disebut sudut dispersi. Besar sudut dispersi dapat dituliskan sebagai berikut:
Φ = δu - δm = (nu – nm) β .......................................2.1

Keterangan:
Φ = sudut dispersi
nu = indeks bias sinar ungu
nm = indeks bias sinar merah
δu = deviasi sinar ungu
δm=deviasi sinar merah

Penerapan Dispersi:
Contoh peristiwa dispersi pada kehidupan sehari-hari adalah pelangi. Pelangi hanya dapat kita lihat apbila kita membelakangi matahari dan hujan terjadi di depan kita. Jika seberkas cahaya matahari mengenai titik-titik air yang besar, maka sinar itu dibiaskan oleh bagian depan permukaan air. Pada saat sinar memasuki titik air, sebagian sinar akan dipantulkan oleh bagian belakang permukaan air, kemudian mengenai permukaan depan, dan akhirnya dibiaskan oleh permukaan depan. Karena dibiaskan, maka sinar ini pun diuraikan menjadi pektrum matahari.Peristiwa inilah yang kita lihat di langit dan disebut pelangi. Bagan terjadinya proses pelangi dapat dilihat pada Gambar 2.2.

Gambar 2.2. Proses terjadi pelangi

Interferensi Cahaya
Pada bab 1(gelombang mekanik), Anda telah ketahui bahwa dua gelombang dapat melalui satu titik yang sama tanpa saling mempengaruhi. Kedua gelombang gelombang itu memiliki efek gabungan yang diperoleh dengan menjumlahkan simpangannya. Interferensi adalah paduan dua gelombang atau lebih menjadi satu gelombang baru. Jika kedua gelombang yang terpadu sefase, maka terjadi interferensi konstruktif (saling menguatkan). Gelombang resultan memiliki amplitudo maksimum.
Jika kedua gelombang yang terpadu berlawanan fase, maka terjadi interferensi destruktif (saling melemahkan). Gelombang resultan memiliki amplitudo nol. Setiap orang dengan menggunakan sebuah baskom air dapat melihat bagaimana interferensi antara dua gelombang permukaan air dapat menghasilkan pola-pola bervariasi yang dapat dilihat dengan jelas. Dua orang yang bersenandung dengan nada-nada dasar yang frekuensinya berbeda sedikit akan mendengar layangan (penguatan dan pelemahan bunyi) sebagai hasi interferensi (akan dibahas pada Bab 3).

Warna-warni pelangi menunjukkan bahwa sinar matahari adalah gabungan dari berbagai macam warna dari spektrum kasat mata. Di lain fihak, warna pada gelombang sabun, lapisan minyak, warna bulu burung merah, dan burung kalibri bukan disebabkan oleh pembiasan. Hal ini terjadi karena interferensi konstruktif dan destruktif dari sinar yang dipantulkan oleh suatu lapisan tipis. Adanya gejala interferensi ini bukti yang paling menyakinkan bahwa cahaya itu adalah gelombang. Interferensi cahaya bisa terjadi jika ada dua atau lebih berkas sinar yang bergabung. Jika cahayanya tidak berupa berkas sinar, maka interferensinya sulit diamati. Interferensi cahaya sulit diamati karena dua alasan:
(1) Panjang gelombang cahaya sangat pendek, kira-kira 1% dari lebar rambut.
(2) Setiap sumber alamiah cahaya memancarkan gelombang cahaya yang fasenya sembarang (random) sehingga interferensi yang terjadi hanya dalam waktu sangat singkat.
Jadi, interferensi cahaya tidaklah senyata seperti interferensi pada gelombang air atau gelombang bunyi. Interferensi terjadi jika terpenuhi dua syarat berikut ini:
(1) Kedua gelombang cahaya harus koheren, dalam arti bahwa kedua gelombang cahaya harus memiliki beda fase yang selalu tetap, oleh sebab itu keduanya harus memiliki frekuensi yang sama.
(2) Kedua gelombang cahaya harus memiliki amplitude yang hampir sama.
Terjadi dan tidak terjadinya interferensi dapat digambarkan seperti pada Gambar 2.3.

Gambar 2.3. (a) tidak terjadi interferensi, (b) terjadi interferensi
Untuk menghasilkan pasangan sumber cahaya kohern sehingga dapat menghasilkan pola interferensi adalah :
(1) sinari dua (atau lebih) celah sempit dengan cahaya yang berasal dari celah tunggal (satu celah). Hal ini dilakukan oleh Thomas Young.
(2) dapatkan sumber-sumber kohern maya dari sebuah sumber cahaya dengan pemantulan saja. Hal ini dilakukian oleh Fresnel. Hal ini juga terjadi pada pemantulan dan pembiasan (pada interferensi lapisan tipis).
(3) Gunakan sinar laser sebagai penghasil sinar laser sebagai penghasil cahaya kohern.
Percobaan Interferensi oleh Frenell dan Young
Untuk mendapatkan dua sumber cahaya koheren, A. J Fresnell dan Thomas Young menggunakan sebuah lampu sebagai sumber cahaya. Dengan menggunakan sebuah sumber cahaya S, Fresnell memperoleh dua sumber cahaya S1 dan S2 yang kohoren dari hasil pemantulan dua cermin. Sinar monokromatis yang dipancarkan oleh sumber S, dipantulkan oleh cermin I dan cermin II yang seolah-olah berfungsi sebagai sumber S1 dan S2. Sesungguhnya, S1 dan S2 merupakan bayangan oleh cermin I dan Cermin II (Gambar 2.4)

Gambar 2.4. Percobaan cermin Fresnell
Berbeda dengan percobaan yang dilakukan oleh Fresnell, Young menggunakan dua penghalang, yang pertama memiliki satu lubang kecil dan yang kedua dilengkapi dengan dua lubang kecil. Dengan cara tersebut, Young memperoleh dua sumber cahaya (sekunder) koheren yang monokromatis dari sebuah sumber cahaya monokromatis (Gambar 2.5). Pada layar tampak pola garis-garis terang dann gelap. Pola garis-garis terang dan gelap inilah bukti bahwa cahaya dapat berinterferensi. Interferensi cahaya terjadi karena adanya beda fase cahaya dari kedua celah tersebut.

Gambar 2.5. Percobaan dua celah oleh Young
Pola interferensi yang dihasilkan oleh kedua percobaan tersebut adalah garis-garis terang dan garis-garis gelap pada layar yang silih berganti. Garis terang terjadi jika kedua sumber cahaya mengalami interferensi yang saling menguatkan atau interferensi maksimum. Adapun garis gelap terjadi jika kedua sumber cahaya mengalami interferensi yang saling melemahkan atau interferensi minimum. Jika kedua sumber cahaya memiliki amplitudo yang sama, maka pada tempat-tempat terjadinya interferensi minimum, akan terbentuk titik gelap sama sekali. Untuk mengetahui lebih rinci tentang pola yang terbentuk dari interferensi dua celah, perhatikan penurunan-penurunan interferensi dua celah berikut.
Pada Gambar 2.6, tampak bahwa lensa kolimator menghasilkan berkas sejajar. Kemudian, berkas cahaya tersebut melewati penghalang yang memiliki celah ganda sehingga S¬¬1 dan S2 dapat dipandang sebagai dua sumber cahaya monokromatis. Setelah keluar dari S1 dan S2, kedua cahaya digambarkan menuju sebuah titik A pada layar. Selisih jarak yang ditempuhnya (S¬2A – S1A) disebut beda lintasan.
........................................2.2

Gambar 2.6. Percobaan Interferensi Young

Jika jarak S1A dan S2A sangat besar dibandingkan jarak S1 ke S2, dengan S1S2 = d, sinar S1A dan S2A dapat dianggap sejajar dan selisih jaraknya ΔS = S2B. Berdasarkan segitiga S1S¬2B, diperoleh
,
dengan d adalah jarak antara kedua celah.
Selanjutnya, pada segitiga COA,
.
Untuk sudut-sudut kecil akan didapatkan
.
Untuk θ kecil, berarti p/l kecil atau p< ................................................2.3
Interferensi maksimum akan terjadi jika kedua gelombang yang tiba di titik A sefase. Dua gelombang memiliki fase sama bila beda lintasannya merupakan kelipatan bilangan cacah dari panjang gelombang.
ΔS = mλ ............................................................2.4
Jadi, persamaan interferensi maksimum menjadi
.........................................................2.5
dengan d = jarak antara celah pada layar
p = jarak titik pusat interferensi (O) ke garis terang di A
l = jarak celah ke layar
λ = panjang gelombang cahaya
m = orde interferensi (0, 1, 2, 3, ...)

Spektrum optik

Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang.
Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.
Banyak spesies yang dapat melihat panjang gelombang di luar jendela optik. Lebah dan serangga lainnya dapat melihat cahaya ultraviolet, yang membantu mereka mencari nektar di bunga. Spesies tanaman bergantung pada penyerbukan yang dilakukan oleh serangga sehingga yang berkontribusi besar pada keberhasilan reproduksi mereka adalah keberadaan cahaya ultraviolet, bukan warna yang bunga perlihatkan kepada manusia. Burung juga dapat melihat ultraviolet (300-400 nm).

Warna-warna di dalam spektrum
Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :[1]

ungu 380-450 nm
biru 450-495 nm
hijau 495-570 nm
kuning 570-590 nm
jingga 590-620 nm
merah 620-750 nm
pink 1000-000 nm

Minggu, 19 Januari 2014

TEORI-TEORI CAHAYA MENURUT PARA AHLI

1.  Euclid
Euclid (Alexandria) Dalam nya Optica ia mencatat bahwa perjalanan cahaya dalam garis lurus dan menjelaskan hukum refleksi. Dia percaya bahwa visi akan melibatkan sinar dari mata ke obyek terlihat dan ia mempelajari hubungan antara ukuran jelas dari objek dan sudut-sudut yang mereka subtend di mata. Hero (juga dikenal sebagai Heron) di Alexandria. Dalam karyanya Catoptrica, Hero menunjukkan dengan metode geometri bahwa jalan sebenarnya yang diambil oleh sebuah sinar cahaya dipantulkan dari sebuah cermin pesawat yang lebih pendek daripada jalur tercermin lain yang mungkin diambil antara sumber dan titik pengamatan.
2.  Robert Grosseteste
Robert Grosseteste (Inggris) scholarum. Magister dari Universitas Oxford dan pendukung pandangan bahwa teori harus dibandingkan dengan observasi, Grosseteste menganggap bahwa sifat cahaya memiliki arti khusus dalam filsafat alam dan menekankan pentingnya matematika dan geometri di mereka belajar. Dia percaya bahwa warna terkait dengan intensitas dan bahwa mereka memperpanjang dari putih menjadi hitam, putih yang paling murni dan berbaring di luar merah dengan hitam tergeletak di bawah biru. pelangi itu menduga sebagai akibat refleksi dan refraksi cahaya matahari oleh lapisan dalam 'awan berair' tapi pengaruh tetesan individu tidak dianggap. Dia memegang melihat, bersama dengan orang-orang Yunani sebelumnya, bahwa visi melibatkan emanasi dari mata ke objek yang dirasakan.
3.  Roger Bacon
Roger Bacon (Inggris). Seorang pengikut Grosseteste di Oxford, Bacon diperpanjang pekerjaan Grosseteste di optik. Ia menganggap bahwa kecepatan cahaya terbatas dan bahwa disebarluaskan melalui media dengan cara yang analog dengan propagasi suara. Dalam karyanya Opus Maius, Bacon menggambarkan studinya atas perbesaran benda kecil dengan menggunakan lensa cembung dan menyarankan agar mereka bisa menemukan aplikasi di koreksi penglihatan yang rusak. Dia menghubungkan fenomena pelangi untuk refleksi sinar matahari dari hujan individu
4.  Al-Kindi (801 M – 873 M)
Ilmuwan Muslim pertama yang mencurahkan pikirannya untuk mengkaji ilmu optik adalah Al-Kindi (801 M – 873 M). Hasil kerja kerasnya mampu menghasilkan pemahaman baru tentang refleksi cahaya serta prinsip-prinsip persepsi visual.
Secara lugas, Al-Kindi menolak konsep tentang penglihatan yang dilontarkan Aristoteles. Dalam pandangan ilmuwan Yunani itu, penglihatan merupakan bentuk yang diterima mata dari obyek yang sedang dilihat. Namun, menurut Al-Kindi penglihatan justru ditimbulkan daya pencahayaan yang berjalan dari mata ke obyek dalam bentuk kerucut radiasi yang padat.
5.  Ibnu Sahl (940 M – 100 M)
Sarjana Muslim lainnya yang menggembangkan ilmu optik adalah Ibnu Sahl (940 M – 100 M). Sejatinya, Ibnu Sahl adalah seorang matematikus yang mendedikasikan dirinya di Istana Baghdad. Pada tahun 984 M, dia menulis risalah yang berjudul On Burning Mirrors and Lenses (pembakaran dan cermin dan lensa). Dalam risalah itu, Ibnu Sahl mempelajari cermin membengkok dan lensa membengkok serta titik api cahaya.
Ibnu Sahl pun menemukan hukum refraksi (pembiasan) yang secara matematis setara dengan hukum Snell. Dia menggunakan hukum tentang pembiasan cahaya untuk memperhitungkan bentuk-bentuk lensa dan cermin yang titik fokus cahanya berada di sebuah titik di poros.
6.  Al-Haitham (965 M – 1040 M)  
Ilmuwan Muslim yang paling populer di bidang optik adalah Ibnu Al-Haitham (965 M – 1040 M). Menurut Turner, Al-Haitham adalah sarjana Muslim yang mengkaji ilmu optik dengan kualitas riset yang tinggi dan sistematis. “Pencapaian dan keberhasilannya begitu spektakuler,” puji Turner.
Sang ilmuwan Muslim ini meyakini bahwa sinar cahaya keluar dari garis lurus dari setiap titik di permukaan yang bercahaya.
Selain itu, Al-Haitham memecahkan misteri tentang lintasan cahaya melalui berbagai media melalui serangkaian percobaan dengan tingkat ketelitian yang tinggi. Keberhasilannya yang lain adalah ditemukannya teori pembiasan cahaya. Al-Haitham pun sukses melakukan eksperimen pertamanya tentang penyebaran cahaya terhadap berbagai warna.
Ia pun mencetuskan teori tentang berbagai macam fenomena fisik seperti bayangan, gerhana, dan juga pelangi. Ia juga melakukan percobaan untuk menjelaskan penglihatan binokular dan memberikan penjelasan yang benar tentang peningkatan ukuran matahari dan bulan ketika mendekati horison.
Ibnu Haytham menyatakan bahwa objek yang dilihat mengeluarkan cahaya yang kemudian ditangkap mata sehingga bisa terlihat.
Secara detail, Al-Haitham pun menjelaskan sistem penglihatan mulai dari kinerja syaraf di otak hingga kinerja mata itu sendiri. Ia juga menjelaskan secara detil bagian dan fungsi mata seperti konjungtiva, iris, kornea, lensa, dan menjelaskan peranan masing-masing terhadap penglihatan manusia.
Al-Haitham juga mencetuskan teori lensa pembesar.
7.  Kamal Al-Din Al-Farisi (1267 -1319 M)
Kitab Tanqih merupakan pendapat dan pandangan al-Farisi terhadap buah karya Ibnu Haytham. Dalam pandangannya, tak semua teori optik yang diajukan Ibnu Haytham menemukan kebenaran. Guna menutupi kelemahan teori Ibnu Haytham, al-Farisi Al-Farisi lalu mengusulkan teori alternatif. Sehingga, kelemahan dalam teori optik Ibnu Haytham dapat disempurnakan.
Salah satu bagian yang paling penting dalam karya al-Farisi adalah komentarnya tentang teori pelangi. Ibnu Haytham sesungguhnya mengusulkan sebuah teori, tapi al-Farisi mempertimbangkan dua teori yakni teori Ibnu Haytham dan teori Ibnu Sina (Avicenna) sebelum mencetuskan teori baru. Teori yang diusulkan al-Farisi sungguh luar biasa. Ia mampu menjelaskan fenomena alam bernama pelangi menggunakan matematika.
Menurut Ibnu Haytham, pelangi merupapakan cahaya matahari dipantulkan awan sebelum mencapai mata. Teori yang dicetuskan Ibnu Haytham itu dinilainya mengandung kelemahan, karena tak melalui sebuah penelitian yang terlalu baik. Al-Farisi kemudian mengusulkan sebuah teori baru tentang pelangi. Menurut dia, pelangi terjadi karena sinar cahaya matahari dibiaskan dua kali dengan air yang turun. Satu atau lebih pemantulan cahaya terjadi di antara dua pembiasan.
Al-Farisi membuktikan teori tentang pelanginya melalui eksperimen yang luas menggunakan sebuah lapisan transparan diisi dengan air dan sebuah kamera obscura," kata J. J O'Connor, dan E.F. Robertson dalam karyanya bertajuk "Kamal al-Din Abu'l Hasan Muhammad Al-Farisi". Al-Farisi pun diakui telah memperkenalkan dua tambahan sumber pembiasan, yaitu di permukaan antara bejana kaca dan air. Dalam karyanya, al-farisi juga menjelaskan tentang warna pelangi. Ia telah memberi inspirasi bagi masyarakat fisika modern tentang cara membentuk warna.
Para ahli sebelum al-Farisi berpendapat bahwai warna merupakan hasil sebuah pencampuran antara gelap dengan terang. Secara khusus, ia pun melakukan penelitian yang mendalam soal warna. Ia melakukan penelitian dengan lapisan/bola transparan. Hasilnya, al-Farisi mencetuskan bahwa warna-warna terjadi karena superimposition perbedaan bentuk gambar dalam latar belakang gelap.
"Jika gambar kemudian menembus di dalam, cahaya diperkuat lagi dan memproduksi sebuah warna kuning bercahaya. Selanjutnya mencampur gambar yang dikurangi dan kemudian sebuah warna gelap dan merah gelap sampai hilang ketika matahari berada di luar kerucut pembiasan sinar setelh satu kali pemantulan," ungkap al-Farisi.
Penelitiannya itu juga berkaitan dengan dasar investigasi teori dalam dioptika yang disebut al-Kura al-muhriqa yang sebelumnya juga telah dilakukan oleh ahli optik Muslim terdahulu yakni, Ibnu Sahl (1000 M) dan Ibnu al-Haytham (1041 M). Dalam Kitab Tanqih al-Manazir , al-Farisi menggunakan bejana kaca besar yang bersih dalam bentuk sebuah bola, yang diisi dengan air, untuk mendapatkan percobaan model skala besar tentang tetes air hujan.
Dia kemudian menempatkan model ini dengan sebuah kamera obscura yang berfungsi untuk mengontrol lubang bidik kamera untuk pengenalan cahaya. Dia memproyeksikan cahaya ke dalam bentuk bola dan akhirnya dikurangi dengan beberapa percobaan dan penelitian yang mendetail untuk pemantulan dan pembiasan cahaya bahwa warna pelangi adalah sebuah fenomena dekomposisi cahaya.
8.  Al Hasan (965-1038 M)
Al Hasan (965-1038) mengemukakan pendapat bahwa mata dapat melihat benda-benda di sekeliling karena adanya cahaya yang dipancarkan atau dipantulkan oleh benda-benda yang bersangkutan masuk ke dalam mata. Teori ini akhirnya dapat diterima oleh orang banyak sampai sekarang ini.
9.  Sir Isaac Newton (1642-1727 M)
Sir Isaac Newton (1642-1727) yang mendukung pendapat Al Hasan merupakan ilmuwan berkebangsaan Inggris yang mengemukakan pendapat bahwa dari sumber cahaya dipancarkan partikel-partikel yang sangat kecil dan ringan ke segala arah dengan kecepatan yang sangat besar. Bila partikel-partikel ini mengenai mata, maka manusia akan mendapat kesan melihat benda tersebut.
                  Tabel Opticks
Alasan dikemukakanya teori ini adalah sebagai berikut:
  • Karena partikel cahaya sangat ringan dan berkecepatan tinggi maka cahaya dapat merambat lurus tanpa terpengaruh gaya gravitasi bumi.
  • Ketika cahaya mengenai permukaan yang halus maka cahaya akan akan dipantulkan dengan sudut sinar datang sama dengan sudut sinar pantul sehingga sesuai dengan hukum pemantulan Snellius. Peristiwa pemantulan ini dijelaskan oleh Newton dengan menggunakan bantuan sebuah bola yang dipantulkan di atas bidang pantul.
  • Alasan berikutnya adalah pada peristiwa pembiasan cahaya yang disamakan dengan peristiwa menggelindingnya sebuah bola pada papan yang berbeda ketinggian yang dihubungkan dengan sebuah bidang miring. Dari permukaan yang lebih tinggi bola digelindingkan dan akan terus menggelinding melalui bidang miring sampai akhirnya bola akan menggelinding di permukaan yang lebih rendah. Jika diamati perjalanan bola, maka sebelum melewati bidang miring lintasan bola akan membentuk sudut α terhadap garis tegak lurus pada bidang miring. Setelah melewati bidang miring lintasan bola akan membentuk sudut β terhadap garis tegak lurus pada bidang miring. Jika permukaan atas dianggap sebagai udara dan permukaan bawah dianggap sebagai air serta bidang miring merupakan batas antara udara dan air, gerak bola dianggap sebagai jalannya pembiasan cahaya dari udara ke air, maka Newton menganggap bahwa kecepatan cahaya dalam air lebih besar dari pada kecepatan cahaya dalam udara.
10.    Jean Focault (1819 – 1868 M)
Jean Focault (1819 - 1868) melakukan percobaan tentang pengukuran kecepatan cahaya dalam berbagai medium. Dalam percobaannya Jeans Focault mendapatkan kesimpulan bahwa kecepatan cahaya dalam air lebih kecil dari pada kecepatan cahaya dalam udara.
11.    Christian Huygens (1629-1695 M)
Menurut Christian Huygens (1629-1695) seorang ilmuwan berkebangsaan Belanda, bahwa cahaya pada dasarnya sama dengan bunyi dan berupa gelombang. Perbedaan cahaya dan bunyi hanya terletak pada panjang gelombang dan frekuensinya.
Pada teori ini Huygens menganggap bahwa setiap titik pada sebuah muka gelombang dapat dianggap sebagai sebuah sumber gelombang yang baru dan arah muka gelombang ini selalu tegak lurus tehadap muka gelombang yang bersangkutan.
Pada teori Huygens ini peristiwa pemantulan, pembiasan, interferensi, ataupun difraksi cahaya dapat dijelaskan secara tepat, namun dalam teori Huygens ada kesulitan dalam penjelasan tentang sifat cahaya yang merambat lurus.
12.    James Clerk Maxwell (1831 - 1879)
Percobaan James Clerk Maxwell (1831 - 1879) seorang ilmuwan berkebangsaan Inggris (Scotlandia) menyatakan bahwa cepat rambat gelombang elektromagnetik sama dengan cepat rambat cahaya yaitu 3×108 m/s, oleh karena itu Maxwell berkesimpulan bahwa cahaya merupakan gelombang elektromagnetik. Kesimpulan Maxwell ini di dukung oleh:
  • Seorang ilmuwan berkebangsaan Jerman, Heinrich Rudolph Hertz (1857 - 1894) yang membuktikan bahwa gelombang elektromagnetik merupakan gelombang tranversal. Hal ini sesuai dengan kenyataan bahwa cahaya dapat menunjukkan gejala polarisasi.
  • Percobaan seorang ilmuwan berkebangsaan Belanda, Peter Zeeman (1852 - 1943) yang menyatakan bahwa medan magnet yang sangat kuat dapat berpengaruh terhadap berkas cahaya.
  • Percobaan Stark (1874 - 1957), seorang ilmuwan berkebangsaan Jerman yang mengungkapkan bahwa medan listrik yang sangat kuat dapat mempengaruhi berkas cahaya.
13.    Max Karl Ernst Ludwig Planck (1858 – 1947 M)
Teori kuantum pertama kali dicetuskan pada tahun 1900 oleh seorang ilmuwan berkebangsaan Jerman yang bernama Max Karl Ernst Ludwig Planck (1858 - 1947).
Dalam percobaannya Planck mengamati sifat-sifat termodinamika radiasi benda-benda hitam hingga ia berkesimpulan bahwa energi cahaya terkumpul dalam paket-paket energi yang disebut kuanta atau foton. Dan pada tahun 1901 Planck mempublikasikan teori kuantum cahaya yang menyatakan bahwa cahaya terdiri dari peket-paket energi yang disebut kuanta atau foton. Akan tetapi dalam teori ini paket-paket energi atau partikel penyusun cahaya yang dimaksud berbeda dengan partikel yang dikemukakan oleh Newton . Karena foton tidak bermassa sedangkan partikel pada teori Newton memiliki massa.
14.    Albert Einstein
Pernyataan Planck ternyata mendapat dukungan dengan adanya percobaan Albert Einstein pada tahun 1905 yang berhasil menerangkan gejala fotolistrik dengan menggunakan teori Planck. Fotolistrik adalah peristiwa terlepasnya elektron dari suatu logam yang disinari dengan panjang gelombang tertentu. Akibatnya percobaan Einstein justru bertentangan dengan pernyataan Huygens dengan teori gelombangnya.Pada efek fotolistrik, besarnya kecepatan elektron yang terlepas dari logam ternyata tidak bergantung pada besarnya intensitas cahaya yang digunakan untuk menyinari logam tersebut. Sedangkan menurut teori gelombang seharusnya energi kinetik elektron bergantung pada intensitas cahaya.
15.    Maxwell
Inti teori Maxwell mengenai gelombang elektromagnetik adalah:
a.      Perubahan medan listrik dapat menghasilkan medan magnet.
b.      Cahaya termasuk gelombang elektromagnetik. Cepat rambat gelombang ) dan permeabilitas & elektromagnetik (c) tergantung dari permitivitas ( (μ) zat.
Menurut Maxwell, kecepatan rambat gelombang elektromagnetik dirumuskan sebagai berikut:
Ternyata perubahan medan listrik menimbulkan medan magnet yang tidak tetap besarannya atau berubah-ubah. Sehingga perubahan medan magnet tersebut akan menghasilkan lagi medan listrik yang berubah-ubah.
Proses terjadinya medan listrik dan medan magnet berlangsung secara sama dan menjalar kesegala arah. Arah getar vektor medan-bersama listrik dan medan magnet saling tegak lurus. Jadi gelombang elektromagnetik adalah gelombang yang dihasilkan dari perubahan medan magnet dan medan listrik secara berurutan, dimana arah getar vektor medan listrik dan medan magnet saling tegak lurus.
Dari seluruh teori-teori cahaya yang muncul dapat disimpulkan bahwa cahaya mempunyai sifat dual (dualisme cahaya) yaitu cahaya dapat bersifat sebagai gelombang untuk menjelaskan peristiwa interferensi dan difraksi tetapi di lain pihak cahaya dapat berupa materi tak bermassa yang berisikan paket-paket energi yang disebut kuanta atau foton sehingga dapat menjelaskan peristiwa efek fotolistrik.

16.    Wilhelm Conrad Röntgen (1845-1923 M)

Wilhelm Conrad Röntgen ialah fisikawan Jerman.
Pada tahun 1895, saat mengadakan percobaan dengan aliran arus listrik dan tabung gelas yang dikosongkan sebagian (tabung sinar katode), Rontgen mengamati bahwa potongan barium platinosianida yang berdekatan melepaskan sinar saat tabung itu dioperasikan. Ia merumuskan teori bahwa saat sinar katode (elektron) menembus dinding gelas tabung, beberapa radiasi yang tak diketahui terbentuk yang melintasi ruangan, menembus bahan kimia, dan menyebabkan fluoresensi. Pengamatan lebih lanjut mengungkapkan bahwa kertas, kayu, dan aluminum, di antara bahan lain, transparan pada bentuk baru radiasi ini. Ia menemukan bahwa itu mempengaruhi plat fotografi, dan, sejak tidak secara nyata menunjukkan beberapa sifat cahaya, seperti refleksi atau refraksi, secara salah ia berpikir bahwa sinar itu tak berhubungan pada cahaya. Dalam pandangan pada sifat tak pasti itu, ia menyebut fenomena radiasi X, walau juga dikenal sebagai radiasi Rontgen. Ia mengambil fotografi sinar-X pertama, dari bagian dalam obyek logam dan tulang tangan istrinya.

17. Rene Descartes (1596-1650 M)

Di desa La Haye-lah tahun 1596 lahir jabang bayi Rene Descartes, filosof, ilmuwan, matematikus Perancis yang tersohor. Waktu mudanya dia sekolah Yesuit, College La Fleche.
Descartes menjelaskan hukum pelengkungan cahaya (yang sesungguhnya sudah ditemukan oleh Willebord Snell). Dia juga mempersoalkan masalah lensa dan pelbagai alat-alat optik, melukiskan fungsi mata dan pelbagai kelainan-kelainannya serta menggambarkan teori cahaya yang hakekatnya versi pemula dari teori gelombang yang belakangan dirumuskan oleh Christiaan Huygens. Tambahan keduanya terdiri dari perbincangan ihwal meteorologi, Descartes membicarakan soal awan, hujan, angin, serta penjelasan yang tepat mengenai pelangi. Dia mengeluarkan sanggahan terhadap pendapat bahwa panas terdiri dari cairan yang tak tampak oleh mata, dan dengan tepat dia menyimpulkan bahwa panas adalah suatu bentuk dari gerakan intern. (Tetapi, pendapat ini telah ditemukan lebih dulu oleh Francis Bacon dan orang-orang lain). Tambahan ketiga Geometri, dia mempersembahkan sumbangan yang paling penting dari kesemua yang disebut di atas, yaitu penemuannya tentang geometri analitis. Ini merupakan langkah kemajuan besar di bidang matematika, dan menyediakan jalan buat Newton menemukan Kalkulus.
18.    Christiaan Huygens
Christiaan Huygens (Belanda). Dalam komunikasi dengan Academie des Science di Paris, dikemukakan teori gelombang Huygens itu cahaya (terbit dalam karyanya Traite de Lumiere pada tahun 1690). Ia menganggap bahwa cahaya ditransmisikan melalui-eter meresapi semua yang terdiri dari partikel elastik kecil, masing-masing dapat bertindak sebagai sumber sekunder wavelet. Atas dasar ini, Huygens banyak menjelaskan karakteristik propagasi dikenal cahaya, termasuk refraksi ganda dalam kalsit ditemukan oleh Bartholinus.
19.    Witelo
Witelo (Silesia). Menyelesaikan Perspectiva yang ditakdirkan untuk tetap menjadi teks standar pada optik selama beberapa abad. Diantara hal-hal lain, Witelo dijelaskan metode machining cermin parabolik dari besi dan dilakukan pengamatan yang cermat pada pembiasan. Dia mengakui bahwa sudut refraksi tidak sebanding dengan sudut datang tapi tidak menyadari refleksi internal total
20.    Theodoric
Theodoric (Dietrich) dari Freiberg. Theodoric menjelaskan pelangi sebagai konsekuensi dari refraksi dan refleksi internal individu dalam hujan. Dia memberi penjelasan atas munculnya primer dan sekunder busur tetapi, berikut gagasan sebelumnya, ia menganggap warna muncul dari kombinasi dari kegelapan dan kecerahan dalam proporsi yang berbeda
21.    Johannes Kepler
Johannes Kepler (Jerman). Dalam bukunya Iklan Vitellionem Paralipomena, Kepler menyarankan bahwa intensitas cahaya dari sumber titik berbanding terbalik dengan kuadrat jarak dari sumber, bahwa cahaya dapat diperbanyak melalui jarak yang tak terbatas dan bahwa kecepatan propagasi yang tak terbatas. Dia menjelaskan visi sebagai konsekuensi dari pembentukan sebuah gambar pada retina oleh lensa mata dan benar menggambarkan penyebab panjang-sightedness dan kepicikan. Dalam karyanya Dioptrice, Kepler disajikan penjelasan tentang prinsip-prinsip yang terlibat dalam mikroskop lensa konvergen divergen / dan teleskop. Dalam risalah yang sama, ia menyarankan agar teleskop bisa dibangun dengan tujuan konvergen dan lensa mata konvergen dan menggambarkan kombinasi lensa yang nantinya akan menjadi dikenal sebagai lensa tele. Ia menemukan pantulan internal total, namun tidak dapat menemukan hubungan yang memuaskan antara sudut datang dan sudut bias.
22.    Francesco Maria Grimaldi
Francesco Maria Grimaldi (ItaliaDalam sebuah buku berjudul Fisika Mathesis de lumine, coloribus et iride diterbitkan secara anumerta,'s pengamatan Grimaldi dari difraksi ketika ia melewati cahaya putih melalui diafragma kecil digambarkan. Grimaldi menyimpulkan bahwa cahaya adalah cairan yang seperti gelombang-gerakan pameran.
23.    Robert Hooke
Robert Hooke (Inggris). Dalam risalah itu, Micrographia, Hooke menggambarkan pengamatan dengan mikroskop senyawa memiliki konvergen lensa objektif dan lensa mata konvergen. Dalam kerja sama itu, dia menjelaskan pengamatannya di warna diproduksi dalam serpih dari mika, gelembung sabun dan film minyak di atas air. Dia diakui bahwa warna dihasilkan serpih mika berkaitan dengan ketebalan mereka tetapi tidak mampu membangun hubungan yang pasti antara ketebalan dan warna. Hooke menganjurkan teori gelombang untuk propagasi cahaya .
24.    Etienne Louis Malus
Etienne Louis Malus (Perancis). Sebagai hasil pengamatan cahaya yang dipantulkan dari jendela Luxembourg Palais di Paris melalui kristal kalsit karena diputar, Malus menemukan efek yang kemudian mengarah pada kesimpulan bahwa cahaya dapat terpolarisasi oleh refleksi
25.    Etienne Louis Malus
Sebagai hasil dari investigasi oleh Fresnel dan Francois Dominique Arago pada interferensi cahaya terpolarisasi dan interpretasi selanjutnya mereka oleh Etienne Louis Malus, disimpulkan bahwa gelombang cahaya yang melintang dan tidak, seperti yang telah diperkirakan sebelumnya, longitudinal
26.    JL Foucault
JL Foucault (Perancis). Foucault menentukan kecepatan cahaya di udara dengan menggunakan metode cermin berputar. Memperoleh nilai 298.000 km.s -1. Pada tahun yang sama, Foucault menggunakan metode cermin berputar untuk mengukur kecepatan cahaya dalam air diam dan menemukan bahwa itu kurang dari di udara
27.    HL Fizeau
HL Fizeau (Perancis). Melakukan percobaan untuk menentukan apakah kecepatan cahaya dalam air dipengaruhi oleh aliran air. Ia menemukan bahwa itu adalah, perubahan dalam kecepatan cahaya menjadi sekitar setengah kecepatan air mengalir
28.    Robert Wilhelm Bunsen dan Gustav Kirchoff
Robert Wilhelm Bunsen dan Gustav Kirchoff mengamati spektrum emisi logam alkali dalam api dan juga mencatat adanya garis-garis gelap yang timbul dari penyerapan ketika mengamati spektrum dari sumber cahaya terang melalui api. Asal dari garis-garis gelap itu mirip dengan garis-garis gelap dalam spektrum matahari diamati oleh Wollaston dan Fraunhofer dan dikaitkan dengan penyerapan cahaya oleh gas di atmosfer matahari yang lebih dingin dibandingkan yang memancarkan cahaya.
29.    James Clerk Maxwell
James Clerk Maxwell (Skotlandia). Dari studi tentang persamaan menggambarkan medan listrik dan magnetik, ditemukan bahwa kecepatan gelombang elektromagnetik harus, dalam kesalahan eksperimental, sama dengan kecepatan cahaya. Maxwell menyimpulkan bahwa cahaya adalah suatu bentuk gelombang elektromagnetik
30.    Lord Rayleigh
Lord Rayleigh (Inggris). Dijelaskan warna biru langit dan matahari terbenam merah sebagai akibat hamburan cahaya biru istimewa oleh molekul di atmosfer bumi.
31.    Thomas Young (1773 - 1829) dan Agustin Fresnel (1788 - 1829)
Menyatakan bahwa cahaya dapat melentur dan berinterferensi dan peristiwa ini tidak dapat di terangkan oleh teori emisi Newton.
32.    Albert Abraham Michelson (1852 - 1931) dan Edward Morley (1838 - 1923)
Mereka membuktikan bahawa Eter (merupakan medium merambatnya cahaya) sebenarnya tidak ada.apabila ada akibat gerak translasi bumi akan menimbulkan angin Eter yang dapat mempengaruhi berkas cahaya.

DAFTAR PUSTAKA

http://id.wikipedia.org/wiki/Wilhelm_Conrad_R%C3%B6ntgen
http://media.isnet.org/iptek/100/Descartes.html
http://rosyid.blog.uns.ac.id/2010/01/07/penemuan-gelombang-elektromagnetik/
http://sidikpurnomo.net/sejarah-gelombang-elektromagnetik.html
http://www.fisikanet.lipi.go.id/utama.cgi?cetakartikel&1256346247
http://www.gaulislam.com/meneropong-dunia-dengan-ilmu-optik
http://esqmagazine.com/khazanah/2010/02/04/1378/kontribusi-fisikawan-muslim-untuk-peradaban-dunia.html

Diberdayakan oleh Blogger.